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[1] A method is described for the joint use of time-lapse ground-penetrating radar (GPR)
travel times and hydrological data to estimate field-scale soil hydraulic parameters. We
build upon previous work to take advantage of a wide range of cross-borehole GPR
data acquisition configurations and to accommodate uncertainty in the petrophysical
function, which relates soil porosity and water saturation to the effective dielectric
constant. We first test the inversion methodology using synthetic examples of water
injection in the vadose zone. Realistic errors in the petrophysical function result in
substantial errors in soil hydraulic parameter estimates, but such errors are minimized
through simultaneous estimation of petrophysical parameters. In some cases the use of a
simplified GPR simulator causes systematic errors in calculated travel times; simultaneous
estimation of a single correction parameter sufficiently reduces the impact of these
errors. We also apply the method to the U.S. Department of Energy (DOE) Hanford site in
Washington, where time-lapse GPR and neutron probe (NP) data sets were collected
during an infiltration experiment. We find that inclusion of GPR data in the inversion
procedure allows for improved predictions of water content, compared to predictions made
using NP data alone. These examples demonstrate that the complimentary information
contained in geophysical and hydrological data can be successfully extracted in a joint
inversion approach. Moreover, since the generation of tomograms is not required, the
amount of GPR data required for analyses is relatively low, and difficulties inherent to
tomography methods are alleviated. Finally, the approach provides a means to capture
the properties and system state of heterogeneous soil, both of which are crucial for
assessing and predicting subsurface flow and contaminant transport.
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1. Introduction

[2] Ground-penetrating radar (GPR) measurements are
not directly related to soil hydraulic parameters in the
vadose zone. However, they are highly sensitive to fluid
distribution (and changes thereof) and are therefore poten-
tially useful for inferring soil hydraulic parameters. The
use of GPR methods for characterizing the distribution and
movement of fluids in the subsurface is well established.
However, only recently has the potential for using time-
lapse GPR measurements to infer soil hydraulic properties—
which can then be used to model flow and transport—been
explored [Binley et al., 2002; Kowalsky, 2003; Kowalsky
et al., 2004a; Lambot et al., 2004; Rucker and Ferré,
2004]. The response of a hydrological system to external
stimuli, such as the injection of water in the subsurface or

ponding of water on the ground surface, depends primarily
on the soil hydraulic functions and their variations in
space (and on the initial and boundary conditions).
Corresponding GPR measurements of the same system
also depend on the soil hydraulic functions—although
indirectly—because the soil hydraulic functions influence
the water distribution, which in turn influences the GPR
response.
[3] A review of GPR applications in hydrological inves-

tigations is given by Annan [2005]. The soil property that
most directly affects the speed at which GPR waves travel
in the subsurface is the dielectric permittivity. For simplic-
ity we use the (relative) dielectric constant k, defined as the
dielectric permittivity of a material normalized by that of
free space. For common earth materials and under favorable
conditions (e.g., where highly conductive materials, such as
clays, are sparse), the dielectric constant is related to the
electromagnetic (EM) wave velocity (V) through

V � cffiffiffi
k

p ; ð1Þ

where c is the EM wave velocity in free space [Davis and
Annan, 1989]. The presence of water affects the dielectric
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constant of soil mixtures [Daniels, 1996] in a manner that
can be modeled with relationships that are purely empirical
[Topp et al., 1980; Persson et al., 2002], semi-empirical
[Birchak et al., 1974; Roth et al., 1990], or theoretical [de
Loor, 1964; Dobson et al., 1985; Friedman, 1998; Sihvola,
1999]. Hereafter, we refer to the functions that relate water
content (or water saturation) to the dielectric constant of
soil mixtures as petrophysical functions, and to the
parameters that describe such functions as petrophysical
parameters.
[4] Because of their high sensitivity to the pore water

distribution, cross-borehole ground-penetrating radar
(GPR) measurements are used increasingly for imaging
transient flow in the vadose zone [e.g., Alumbaugh et al.,
2002; Binley et al., 2001; Kowalsky et al., 2004b].
Tomographic inversion techniques [Peterson et al., 1985]
are typically applied to cross-borehole GPR data sets
[Eppstein and Dougherty, 1998; Peterson, 2001] to obtain
spatial distributions of EM velocity (tomograms), which
can be converted to water saturation using a petrophysical
function.
[5] While tomography is especially useful for gaining a

qualitative understanding of flow processes in the subsurface
(e.g., to help identify preferential flow paths), there are some
well known limitations, such as the occurrence of artifacts,
like smoothing and smearing, that can be introduced
through the tomographic inversion procedure [Stewart,
1991; Peterson, 2001]. For demonstration, Figure 1 depicts
the traditional application of cross-borehole tomography
for the case of a simulated water injection in the vadose
zone. An injected water plume corresponds to the region
with decreased EM velocity (Figure 1a). Simulation of a
dense set of GPR measurements (Figure 1b), followed by
tomographic inversion, results in a tomogram (Figure 1c)
that is similar to the true velocity model but is distorted.
An implicit assumption in such a procedure is that the
water distribution, which determines the EM velocity
distribution, remains constant during the survey; in reality
it may change appreciably, especially in dynamic flow
situations.
[6] Such limitations make the direct use of tomograms

potentially problematic for hydrological applications
[Day-Lewis and Lane, 2004; Moysey et al., 2005]. A
more fundamental limitation is that traditional cross-
borehole tomography cannot in general be used to obtain
quantitative estimates of vadose zone flow parameters,
like the permeability and the soil hydraulic parameters of
the capillary pressure and relative permeability functions,
except in some limited cases [e.g., Hubbard et al.,
1997].
[7] As opposed to the typical use of cross-borehole data

described above and depicted in Figure 1, an alternative
application involves their direct integration in hydrological
inversion schemes in a coupled fashion (i.e., where the
geophysical and hydrological data are simulated simulta-
neously and are explicitly linked to hydrological parame-
ters). Few such applications have been reported in the
literature, especially for vadose zone applications.
Hyndman et al. [1994] and Hyndman and Gorelick
[1996] developed an inversion algorithm for estimating
lithological zones and the hydrological parameters of the
zones in fully saturated aquifers using seismic and tracer

Figure 1. Traditional cross-borehole tomography using
synthetic GPR measurements. For this example, a dense set
of GPR measurements were simulated with a velocity
model corresponding to that shown in (a) and with GPR
antenna positions as indicated in (b), giving the velocity
tomogram shown in (c). The color scale for velocity (V)
is the same for both (a) and (c). Squares and triangles in
(b) indicate the position of the transmitting and receiving
antenna locations, respectively.
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data. Rucker and Ferré [2004] used an analytical GPR ray-
tracing model and an analytical unsaturated flow model to
invert for the average hydraulic conductivity value with
synthetic GPR cross-borehole travel time measurements
collected through time at a single depth. They also
demonstrated that two additional hydraulic parameters
can be estimated if pressure head measurements are
included in the inversion.
[8] Here we describe an approach for estimating soil

hydraulic parameter distributions such as in the vadose
zone through the coupled numerical simulation (and
inversion) of multiple-offset cross-borehole GPR and
hydrological data collected during transient flow experi-
ments. Our approach uses GPR travel times directly and
does not aim to obtain geophysical images (tomograms),
avoiding some difficulties of cross-borehole tomography
and allowing for a far less dense set of GPR data to be
collected (thus allowing data sets to be collected in less
time). While the methodology can be applied to any type
of hydrological data, we focus on neutron probe measure-
ments, which provide near-borehole estimates of water
content. Coupling between the hydrological and GPR
simulators links the simulated water saturation distribu-
tions and the generated porosity distributions to the
simulated GPR data (e.g., travel times), thus indirectly
linking the geophysical data to the soil hydraulic
parameters. Joint inversion proceeds by perturbing the
soil hydraulic parameters—which alters the simulated
hydrological and geophysical data—until the simulated
and measured hydrological and geophysical data are in
good agreement. A flow chart depicting the joint
inversion procedure, which we implemented in iTOUGH2

[Finsterle, 1999], is given in Figure 2, and details of the
inversion methodology are discussed below.
[9] The methodology we employ is an extension of the

work by Kowalsky et al. [2004a], which involved the
joint use of geophysical and hydrological data within a
maximum a posteriori (MAP) inversion framework
[McLaughlin and Townley, 1996] that employed concepts
from the pilot point method [RamaRao et al., 1995;
Gomez-Hernandez et al., 1997]. The approach of Kowalsky
et al. [2004a] allowed for estimation of unknown log-
permeability values, at so-called pilot point locations, and
other hydrological parameters, resulting in hydrological
models that honored geophysical and hydrological data
and that contained permeability distributions with specified
patterns of spatial correlation and that honored available
log-permeability point measurements. The method was
shown to be useful for accurately predicting flow phe-
nomena and quantifying parameter uncertainty. However,
the forward model used to simulate GPR data was limited
to a simple data acquisition configuration, disallowing
the use of multiple-offset GPR measurements (discussed
below) and generalized three-dimensional models. In
addition, the petrophysical function was assumed to be
known and error free, despite the fact that inaccuracies
easily enter into the field-scale petrophysical function when
it is derived using non-site-specific data or laboratory-scale
measurements [e.g., Moysey and Knight, 2004; Lesmes and
Friedman, 2005].
[10] At present the aforementioned method of Kowalsky

et al. [2004a] is extended to allow for (1) inclusion of
GPR measurements (travel times) collected using any
transmitter and receiver geometry within a possibly
three-dimensional model, and (2) estimation of petrophys-
ical parameters. (We have also extended the method to
allow for possible estimation of spatial correlation param-
eters, but this possibility is not currently explored herein.)
These extensions permit investigations under more realistic
conditions (e.g., where there is uncertainty in the petro-
physical function) and increase the flexibility of GPR data
acquisition configurations that may be considered, which
allows for soil hydraulic parameter estimates with in-
creased resolution and accuracy. Following a description
of the methodology, given in section 2, synthetic examples
and an application using field data are presented in
sections 3 and 4, respectively.

2. Methodology

2.1. Hydrological Measurements

[11] The hydrological process considered in this study is
variably saturated flow in the vadose zone. Variably
saturated flow of incompressible water in non-deformable
porous media can be modeled with the Richards’ equation:

j
@Sw
@t

þr K Swð Þ
rwg

rPc Swð Þ � K Swð Þz
� �

¼ 0; ð2Þ

where K and Pc, both functions of water saturation Sw, are
the unsaturated hydraulic conductivity and the capillary
pressure, respectively, rw is the water density, g is the
gravitational constant, j is the porosity, and z is the

Figure 2. Flow chart for joint inversion of geophysical
and hydrological measurements using framework of
iTOUGH2 [Finsterle, 1999].
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vertically oriented unit vector (positive upward). The
hydraulic conductivity is defined as:

K ¼ k
krel Swð Þrwg

mw
; ð3Þ

where krel is the dimensionless relative permeability (the
only component of K that is a function of water saturation),
mw is the dynamic viscosity of water, and k is the absolute
permeability, which is a scalar k for the case of isotropic
media, and which has horizontal and vertical components kh
and kv, respectively, for the case of anisotropic media. For
this study, we model the relative permeability and capillary
pressure with the functions given by van Genuchten [1980]
as:

krel ¼
ffiffiffi
S

p
1� 1� Sm

�1
� �mh i2

ð4Þ

Pc ¼ �a�1 Sm
�1 � 1

� �1�m

ð5Þ

S ¼ Sw � Sresw

Ssatw � Sresw

; ð6Þ

where S is the normalized water saturation, and Sw
res and Sw

sat

are the soil-specific residual and maximum water saturation
values, respectively, and m (dimensionless) and a (Pa�1) are
soil-specific parameters. Hysteresis of the relative perme-
ability function can affect the redistribution of water
following infiltration [Philip, 1991], but is not considered
in this study.
[12] To simulate flow in the vadose zone using

equations (2)–(6), the soil hydraulic parameters j, a, m,
Sw
res, Sw

sat, and k must be specified. Although a number of
studies suggest that spatial variability of these parameters
can be significant, data describing such variability for
modeling applications are limited [Jury et al., 1987; Russo
and Bouton, 1992]. The absolute permeability is commonly
the parameter to which flow in the vadose zone is most
sensitive, arguably making its characterization of primary
importance. In the present work, all parameters are
considered spatially uniform, except for k, which can be
treated as a space random function (SRF).
[13] The joint inversion approach described below aims

to estimate soil hydraulic parameters using a combination of
hydrological measurements (e.g., water content values in-
ferred from neutron probe logging) and ground-penetrating
radar measurements (e.g., cross-borehole travel times),
which are highly sensitive to the time- and space-varying
distribution of Sw, which is in turn affected by the soil
hydraulic parameters. The framework used for the coupled
simulation (and inversion) of hydrological and geophysical
data (discussed next) is iTOUGH2 [Finsterle, 1999], a code
that provides parameter estimation capabilities for the
TOUGH2 flow simulator [Pruess et al., 1999].

2.2. Ground-Penetrating Radar Measurements

2.2.1. Petrophysical Function Relating Water
Saturation and Porosity to Dielectric Constant
[14] Application of GPR measurements in the subsurface

requires a petrophysical function that relates the soil water

saturation and porosity to the dielectric constant (e.g.,
reviews are given by Huisman et al. [2003] and Lesmes
and Friedman [2005]). One of the most commonly used
models, by Topp et al. [1980], is given as a third-order
polynomial:

k ¼ 3:03þ 9:3qþ 146:0q2 � 76:7q3; ð7Þ

where q is the water content (the product of water saturation
and porosity), and where the coefficients were determined
through laboratory measurements on several inorganic soils.
However, the dielectric constant of soils is sensitive to
additional soil properties, such as the mineral composition of
the solid soil particles [Roth et al., 1990], organic matter and
bulk density [Jacobsen and Schjonning, 1993], temperature
[Roth et al., 1990;Or and Wraith, 1999], and grain geometry
and cementation [Lesmes and Friedman, 2005], all of which
suggest the need for alternative petrophysical relationships
that allow for site-specific variations.
[15] Alternatively, there are theoretically based models

[Lesmes and Friedman, 2005], such as volumetric mixing
formulae, which account for the volume fraction and
geometrical arrangement of materials with known or
measurable dielectric constants. An expression used for
two-phase mixtures [Birchak et al., 1974] and extended to
three-phase mixtures of air, water, and solids [Alharthi and
Lange, 1987; Roth et al., 1990] is given by

k ¼ 1� jð Þkns þ Swjknw þ 1� Swð Þjkna
� 	1

n; ð8Þ

where j is the porosity, ks is the dielectric constant for the
solid components, kw and ka are the known dielectric
constants for water and air, respectively, and n is a
parameter related to the geometric arrangement of materials
relative to the applied electric field [Ansoult et al., 1984].
The value of n is commonly assumed to be 0.5, which is
expected in isotropic media [Birchak et al., 1974], but
measured values for sediments have been observed to range
between 0.4 and 0.65 [Chan and Knight, 1999].
[16] The petrophysical model of equation (8) can be

adjusted to site-specific conditions, given estimates of ks
and j. The measurement of porosity from cores can be
problematic, since the in-situ packing of unconsolidated or
semi-consolidated materials is difficult to preserve through
the coring process. Values of ks are sometimes assumed
(e.g., a ‘‘representative’’ value is taken from the literature)
or are determined with cores in the laboratory using time-
domain reflectometry (TDR) methods [Topp et al., 1980;
Martinez and Byrnes, 2001]. However, errors can be
unintentionally introduced from several sources during this
process. As petrophysical functions are frequency depen-
dent [Robinson et al., 2003, 2005], relationships derived in
the laboratory from TDR measurements, for example, are
not necessarily appropriate for application at the field scale
[Huisman et al., 2003; Moysey and Knight, 2004], where
the frequencies employed are typically lower than in the
laboratory. Petrophysical functions may also be derived in
the field by correlating dielectric constant estimates, derived
from cross-borehole GPR, with estimates of water content
inferred from co-located neutron probe (NP) data [Hubbard
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et al., 1997]. However, tomogram artifacts (such as those
resulting from smoothing, noisy data, or smearing due to
limited ray coverage [Stewart, 1991]) and errors in NP
data [Yao et al., 2004; Fares et al., 2004] can introduce
errors into the estimated petrophysical function [Huisman
et al., 2003; Day-Lewis and Lane, 2004; Moysey et al.,
2005; N. Linde et al., Inversion of tracer test data using
tomographic constraints, submitted to Water Resources
Research, 2005].
[17] As will be described in section 2.3, our inversion

approach allows for the estimation of petrophysical param-
eters in equation (8)—at present, we consider the estima-
tion of ks—thus helping to overcome potential errors
introduced by scale discrepancy and measurement error. It
should be noted that we currently assume the error in the
petrophysical function is contained entirely in the param-
eters, not in the petrophysical model itself; the flexible form
of equation (8) ensures that it can be applied in most real-
world situations.
2.2.2. Simulation of GPR Data
[18] Numerous techniques are available for simulating

GPR data, ranging from ray-based methods [Cai and
McMechan, 1995; Sethian and Popovici, 1999], to
pseudo-spectral methods [Casper and Kung, 1996], to
time-domain finite-difference full-waveform methods [Kunz
and Luebbers, 1993; Bergmann et al., 1998; Kowalsky et
al., 2001]. Ray-based methods are the simplest and most
computationally efficient for the simulation of GPR travel
times; they are based on a high frequency approximation
that calculates the arrival time of the first break of the
transmitted wave (i.e., the time at which the wave amplitude
departs from zero) and ignores the remainder of the
waveform [Bregman et al., 1989]. While a full-waveform
finite-difference method is used in the synthetic examples of
this study to simulate GPR data, the straight-ray method is
used for inversion; we examine whether the straight-ray
approximation, chosen for computational efficiency, sig-
nificantly impacts the estimated parameters and predicted
system behavior. As will be discussed in the synthetic
examples given below, significant errors can arise in travel
times simulated using the straight-ray method, depending
on the corresponding water distribution, leading in some
cases to a systematic error (over-prediction) in simulated
travel times that must be accounted for in the inversion
procedure.
[19] The travel time T for an EM wave traveling between

the transmitting and receiving antennas in a domain
characterized by discrete grid blocks can be approximated
by defining a straight ray between the antennas and
summing the travel times through each grid block that the
ray travels:

T ¼
XN
i¼1

Li

Vi

; ð9Þ

where Li is the length of the travel path (linear line
segment) in block i, N is the number of blocks through
which the ray passes, and Vi is the EM velocity in block i.
For the present work, the petrophysical function is
modeled using the volumetric mixing formula of
equation (8), which, through combination with equations (1)

and (9), allows for the travel time T to be calculated as
follows:

T ¼
XN
i¼1

Li

c
1� jið Þ ksð Þn þ Sw;iji kwð Þn

�
þ 1� Sw;i

� �
ji kað Þn

	
;

ð10Þ

where Sw,i and ji are the water saturation and porosity in grid
block i, respectively. Since porosity is presently assumed to
be constant ji = j.
[20] While more sophisticated methods (such as curved-

ray methods) are reasonable alternatives for use in joint
inversion, they would be computationally demanding, es-
pecially for three-dimensional models. Note that our meth-
odology involves large numbers of parameter perturbations,
each of which requires an entire flow simulation and a full
set of simulated GPR surveys. Furthermore, curved-ray
paths would need to be calculated for all antenna combina-
tions that are used for each survey and for each parameter
perturbation. Application of curved-ray methods to models
with irregular grids would pose additional difficulties.
[21] The straight-ray travel time approximation (see

equation (10)) allows for most calculations to be done
only once and before the inversion begins (e.g., the list of
values Li for each combination of transmitting and receiving
antennas). Additionally, irregular and three-dimensional
models are easily and efficiently simulated. The appropri-
ateness of the straight-ray approximation is further dis-
cussed in section 3.1.1.
[22] In this work, the simulation of cross-borehole GPR

travel times in a domain undergoing transient fluid flow was
made possible through solution of equation (10) within
iTOUGH2 [Finsterle, 1999]. Each travel time is thus a
function of the distributions of water saturation and
porosity, the variable dielectric parameters (n, ks), and
remaining known parameters.

2.3. Joint Inversion Methodology

[23] Here we extend the method developed by Kowalsky
et al. [2004a] for estimating flow parameter distributions in
the vadose zone using hydrological and geophysical data
collected during transient flow experiments. The approach
used a maximum a posteriori (MAP) inversion framework
[McLaughlin and Townley, 1996; Rubin, 2003] and
employed concepts from the pilot point method [RamaRao
et al., 1995; Gomez-Hernandez et al., 1997]. Application of
pilot point methods involves the generation of spatially
correlated parameter fields, which are subsequently per-
turbed by changing the values at select conditioning points
(referred to as pilot points) to minimize the misfit between
measured and simulated data (which could include both
hydrological and geophysical data).
[24] At present, the permeability distribution is anisotropic

and treated as a lognormal SRF. The spatially varying
component of permeability is introduced through the per-
meability modifier x(x), defined through the following
relationships:

kv xð Þ ¼ kv10
x xð Þ ð11Þ

kh xð Þ ¼ kh10
x xð Þ ð12Þ
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where kv and kh are the mean values of vertical and
horizontal permeability, respectively, and x(x) is an SRF
with known patterns of spatial correlation (i.e., known
semivariograms). Given the frequent availability of semi-
variograms derived from well data and investigations of
nearby outcrops or sites with similar geology, it is considered
reasonable to assume that the spatial correlation patterns are
known. However, we note again that the methodology does
not prevent the spatial correlation parameters from being
treated as unknowns. The mean of x(x) is zero and its
variance is equivalent, as is the semivariogram, to that of the
log distributions of kh(x) and kv(x).
[25] The permeability modifier field is parameterized

using pilot points, giving a vector of unknowns (Xpp) at
the pilot point locations. Through sequential simulation
[Deutsch and Journel, 1992], a permeability modifier field
conditional to Xpp is generated. During the inversion
procedure, the vector Xpp is repeatedly perturbed as x(x) is
updated through sequential simulation, until the log-
permeability field (calculated with equations (11) and
(12)) is found that provides (1) an optimal match to
the observed hydrological and geophysical data, and
(2) minimal deviation of the unknowns from prior estimates,
if available. The remaining unknown model parameters are
simultaneously estimated with Xpp.
[26] In previous work, the petrophysical function was

assumed to be known and error free. In addition, the
technique used for simulating ground-penetrating radar
measurements was limited to one simple data acquisition
configuration, the zero-offset profile (ZOP), in which the
transmitting and receiving antennae are kept at equal
depths during each measurement. This acquisition geom-
etry yields a single depth profile of GPR travel times.
While ZOP surveys are useful for gaining depth-averaged
information, they cannot be used to resolve lateral varia-
tions in material properties.
[27] Presently our methodology incorporates equation (10)

for the calculation of GPR travel times for any transmitter
and receiver combination (i.e., multiple-offset profile
surveys). We accommodate two- and three-dimensional
models with grid cells of any shape (regularly-spaced
grids are not required). Additionally, we expand the
parameters that can be considered as unknowns to include
the vector of soil hydraulic parameters, such as ah = [j, a,
m, Sw

res, Sw
sat, kh, kv, . . .] from equations (2)–(6); the vector

of petrophysical parameters aK = [ks, n] from equation (8);
and, while not explored in this study, semivariogram
parameters, including, for example, the range parameter
occurring in most semivariogram models [Deutsch and
Journel, 1992]. These extensions permit investigations
under more realistic conditions, such as where there is
uncertainty in the petrophysical function as well as in
the spatial correlation function. Moreover, as opposed to
the ZOP surveys previously considered, the wealth of
data available in multiple-offset profile surveys improves
the accuracy and resolution of estimated soil hydraulic
parameters.
[28] The general goal of the inverse problem in this study

is the estimation of vectors a = [ah, aK] and Xpp given the
following measurements:
[29] 1. GPR travel time measurements (T), given as

zGPR = T(xTx
t , xRx

t ) + eGPR, for survey times t (length n) and

taken for the transmitting and receiving antenna positions
xTx
t and xRx

t , such that

xtTx; x
t
Rx

� �
¼ xt1

Tx 1ð Þ; x
t1

Rx k¼1;M1;1ð Þ

 �
;

xt1
Tx 2ð Þ; x

t1

Rx k¼1;M1;2ð Þ

 �
;

..

.

xt1
Tx N1ð Þ; x

t1

Rx k¼1;M1;N1ð Þ

 �
;

xt2
Tx 1ð Þ; x

t2

Rx k¼1;M2;1ð Þ

 �
;

xt2
Tx 2ð Þ; x

t2

Rx k¼1;M2;2ð Þ

 �
;

..

.


xt2
Tx N2ð Þ; x

t2

Rx

�
k¼1;M

2;N2

�
�
;

xtn
Tx 1ð Þ; x

tn

Rx k¼1;Mn;1ð Þ

 �
;

xtn
Tx 2ð Þ; x

tn

Rx k¼1;Mn;2ð Þ

 �
;

..

.

xtn
Tx Nnð Þ; x

tn

Rx k¼1;Mn;Nnð Þ

 �

where Mi,j is the number of receiving antenna positions for
transmitting antenna xTx( j)

ti at survey time ti. The length of

the vectors xTx
t and xRx

t depends on the number of
transmitting and receiving antenna combinations used for

each survey time, and is given by
Pn
i¼1

PNi

j¼1

Mi,j. The

measurement error vector associated with measurement of
zGPR is of the same length and is given by eGPR. This
general notation allows for data to be collected for varying
subsets of receiving and transmitting antenna positions at
different times.
[30] 2. Hydrological measurements, given here as local

water content measurements (e.g., inferred from NP data)
zH = j 	 Sw[(xH

tH)] + eH, taken at borehole positions xH
(length MH) and at survey times tH (length nH), where eH is
the measurement error associated with measurement of zH
(length MH 
 nH). As noted previously, the porosity is
assumed to be spatially uniform in the examples given
below, although the methodology does not require it.
[31] Accurate characterization of eGPR is significant but

challenging, since its magnitude and distribution depend on
antenna separation distance and vertical offset. We
hypothesize that accounting for spatial variations in eGPR
is of secondary importance for the current application due to
spatial averaging effects and data redundancy (overlapping
of ray paths traveling between different antenna positions).
For simplicity we model the distribution of eGPR as
independent of time and antenna position and leave related
investigations for future research.
[32] In order to test the approach with minimal data

requirements, we do not work with point measurements of
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permeability in this study, although they can easily be
included if they are available [Kowalsky et al., 2004a]. As
mentioned above, the geostatistical information describing
the log-permeability SRF is assumed known from outcrop
studies or previously characterized sites with similar
geology [cf. Rubin, 2003] (section 2.3).
[33] Assuming that (a) the measurement error vectors

eGPR and eH are characterized by known normal distribu-
tions, (b) the log-permeability field is uncorrelated with
other soil-hydraulic parameters, and (c) the prior informa-
tion of the parameters is normally distributed, then the
objective function (OF) that is minimized during inversion
can be written as:

OF að Þ ¼ z� F að Þ½ �TC�1
v z� F að Þ½ �

þ xpp � xpp
� 	T

C�1
xpp

xpp � xpp
� 	

þ a� a½ �TC�1
a a� a½ �;

ð13Þ

where �xpp and a are the prior means of xpp and a,
respectively, and Cxpp and Ca are the corresponding

covariance matrices. The variances of a form the diagonal
terms in Ca (the remaining terms are zero). For the case in
which log-permeability point measurements are available,
�xpp and its variance values (which are used as the diagonal
terms in Cxpp) are calculated through kriging [Deutsch
and Journel, 1992]. Since we currently assume that no
log-permeability point measurements are available, the
prior values of �xpp equal zero (i.e., each pilot point is
penalized equally for deviating from the mean log-perme-
ability value, which is one of the unknowns in aH); in
addition, the diagonal values of Cxpp contain the known log-
permeability variance, ensuring that the log-permeability
values at the pilot point locations stay reasonably close to the
mean value k.
[34] For models with spatially uniform soil properties (as

in the example given in section 3.1), only one inversion
realization is performed, giving MAP estimates that are
equivalent to the weighed least squares solution. In
models with heterogeneous permeability (as in the example
given in section 3.2 and the application to field data given
in section 4), multiple inversions are performed, each
giving one realization of the MAP solution, and each
obtained using a different initial log-permeability field
(i.e., a seed number that is unique to each inversion
realization is used for sequential simulation [Deutsch and
Journel, 1992]).
[35] In the following examples, the Levenberg-Marquardt

algorithm [Levenberg, 1944; Marquardt, 1963] was used to
minimize the objective function.

3. Synthetic Examples

[36] The joint inversion methodology is demonstrated in
this section using synthetic data collected during simulated
water injections in the subsurface. The objective function
of equation (13) can be used to estimate all unknowns or
some subset of unknowns, depending on the problem
being considered. Here we test the effectiveness of the
method for estimating various subsets of unknowns
(including permeability, anisotropy ratio, parameters of
the capillary pressure and relative permeability functions,
porosity, as well as a parameter from the petrophysical
function) for two different heterogeneity conditions. In the
first example (section 3.1), we consider a model with
spatially uniform soil parameters. In the second example
(section 3.2), we consider a model with a heterogeneous
permeability distribution.

3.1. Model With Uniform Soil Hydraulic Parameters

[37] The model considered in the first example (Figure 3)
has horizontal and vertical dimensions of 3 m and 4 m,
respectively, grid spacing of 10 cm (in both directions), and
spatially uniform soil hydraulic properties (Table 1). Bound-
ary conditions are as follows: the total flux across the upper
boundary, which represents the ground surface, is known;
the lower boundary is fully saturated, representing the water
table; and no-flow conditions are implemented at the
vertical sides of the model. Because the steady-state water
profile and the transient response to water injection depend
on the hydraulic parameters, the simulation proceeds in two
steps. First, the steady-state profile (gravity-capillary equi-
librium) is simulated for the given set of hydraulic param-

Figure 3. Model geometry for synthetic examples:
(a) injection point and neutron probe measurement
locations; (b) GPR antenna locations and the straight-ray
paths used for inversion.
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eters. Second, using the steady-state profile to specify initial
conditions, water injection and subsequent redistribution
are simulated by imposing a mass flux of water equal to
1.08 kg/hr at the injection point for 12 hours duration. See
Table 1 for a list of parameters used in the simulation.
[38] To test the inversion methodology, we simulated

GPR and NP data before water injection (pre-injection)
and several times after water injection (18, 24, 36, and
48 hours post-injection) in boreholes at horizontal positions
of 1 m and 3 m (Figure 3). The synthetic NP data were
obtained by recording the water content values during the
simulation at the sampling locations shown in Figure 3a,
and then adding measurement noise (zero-mean random
deviates with standard deviation of 0.01).
[39] In this example, the time that would be required to

collect GPR measurements (7 transmitting antennas 

19 receiving antennas = 133 measurements, as shown in
Figure 3b) in the field would take only 15% of the time
that would be required for the cross-borehole tomography
example shown in Figure 1 (which had 28 transmitting
antennas 
 28 receiving antennas = 784 measurements).
[40] To obtain the GPR data for the ‘‘true’’ model, a two-

dimensional finite difference code was implemented based
on the method of Bergmann et al. [1998] and used to
generate synthetic GPR waveforms with a central source
frequency of 250 MHz. Grid spacing of 2 cm was used for
both the horizontal and vertical directions, and the time step
of 0.075 ns was used. Parameters describing the electrical
properties that are needed for simulation are also given in
Table 1. (Note that the electrical conductivity must be
specified for the finite difference approach and is also a
function of water saturation; see Kowalsky et al. [2004b] for
details. We chose an electrical conductivity function that
assumes surface conduction, such as due to the presence of
clays, is negligible.) The travel time data were obtained by
picking the first-break arrival times from the synthetic
waveforms and then adding measurement noise (zero-mean
random deviates with standard deviation of 0.25 ns).

[41] For emphasis, we note again that the GPR travel
times used as synthetic data for inversion were calculat-
ed from the simulated full waveforms, which reflect
complex EM wave propagation effects, such as ray
curving; that is, the synthetic travel time data were not
generated using the straight-ray approximation. However,
to simulate GPR travel times during inversion, the
straight ray approximation is used. In some cases this
approximation leads to systematic errors, which is dis-
cussed in section 3.1.1.
[42] The simulated water saturation profiles for two times

(pre-injection and 18 hours after onset of injection) are
shown in Figures 4a and 4b. In addition, the corresponding
GPR waveforms recorded for one selected transmitting
antenna are shown in Figures 4c and 4d along with the
travel times that were picked from the waveforms. Note the
longer travel times resulting from the increased water
saturation in the vicinity of the injection point.
3.1.1. GPR Travel Time Considerations
[43] For this uniform soil model (but not for the more

realistic heterogeneous examples that follow), a systematic
error (bias) in the simulated GPR straight-ray travel times
occurs and must be accounted for to obtain good soil
hydraulic parameter estimates. Figure 5 shows how error
in the straight-ray travel times is related to the injection time
and the distance that the straight-ray passes above or below
the injection point (the errors were calculated relative to the
travel times picked from waveforms simulated using the
finite difference method, as discussed above). At early
times, after the onset of injection but before the injected
water spreads appreciably, the injected plume of water
serves as a low velocity inclusion (increased water satura-
tion results in decreased EM velocity) and causes a sharp
contrast in the EM velocity. (For reference, at t = 18, 24, 36
and 48 hours, the maximum velocity decreases due to the
inclusion are 20%, 17%, 14%, and 12%.) When the travel
path of the earliest arriving energy is curved around the low-
velocity inclusion, use of the straight-ray approximation

Table 1. Properties Used for Synthetic Examples

Description Parameter Values

Hydrological parametersa mw = 1.002 
 10�3 Pa s, rw = 1000 kg/m3

kv = 5.0 
 10�12 m2, kh = 2.0 
 10�11 m2

m = 2.69, a = 3.573 
 10�4 Pa�1

Sw
res = 0.083, Sw

sat = 1.0
j = 0.364

Geostatistical model for log-permeability (spherical semivariogram)b Horizontal Vertical
gk(h) = c0 + c1 [3/2(h/r) � 1/2(h/r)3] (for h < r)
gk(h) = c0 + c1 (for h > r)

c0 = 0.01 c0 = 0.01
c1 = 0.5 c1 = 0.5
r = 6.0 m r = 0.3 m

Dielectric constant functionc ks = 4.5, n = 0.5

Electrical conductivity functiond

s = swSw
n*jm*/a

a = 0.88, n* = 2.0, m* = 1.37, sw = 0.4 mS/cm

aParameters defined in text; see description of (2)– (5).
bFor example in section 3.2. h is separation distance (m), c0 and c1 are nugget and variance, respectively. The range is a measure of spatial persistence for

the spherical semivariogram [Deutsch and Journel, 1992].
cParameters defined in text; see description of equation (8).
dArchie [1942]; also see Kowalsky et al. [2004b] for description. Used for generating synthetic waveforms with finite difference method; not used in

calculating straight ray travel times with (10).
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results in the inclusion appearing drier than it is in reality.
While in this case the magnitude of the travel time error is
small and on the order of the measurement noise (standard
deviation of 0.25 ns), it is a systematic rather than random
error and thus introduces a bias, which significantly affects
the accuracy of the soil hydraulic parameter estimates
obtained through inversion.
[44] The mean and standard deviation of the errors in the

straight-ray arrival times for all post-injection surveys are
0.088 ns and 0.093 ns, respectively. (The corresponding
values for the pre-injection survey are much lower: 0.014 ns
and 0.011 ns.) To partially compensate for the bias in the
GPR travel times simulated using the straight-ray approx-
imation at early post-injection times, we include the post-
injection shift in the arrival times (Tshift) as an unknown
parameter to be estimated through inversion.
[45] The use of the relatively simple straight-ray approx-

imation combined with the estimation of the Tshift parameter
requires some justification. While more sophisticated
forward models (such as curved-ray methods) are viable
alternatives for use in joint inversion, they suffer from
limitations of their own (discussed above), and they may
include additional, uncertain parameters that need to be
subjected to joint estimation to avoid a potential bias. Since
estimation of only one additional parameter (Tshift) in the
straight-ray model results in randomly distributed residuals
and allows for accurate hydrological parameter estimates,
the use of a more sophisticated model may not be warranted
and may lead to overparameterization. Most importantly, we
note again that estimation of the correction parameter is no
longer necessary when dealing with more realistic hetero-

geneous models (as is discussed in the subsequent example
in section 3.2).
3.1.2. Inversion Results
[46] Using the time-lapse GPR travel time and borehole

NP measurements described above, we test the approach for
two different sets of unknown parameters (refer to Table 2).

Figure 4. Simulated saturation profiles (a) before injection (steady state) and (b) 18 hours after onset of
injection for model with uniform soil parameters. A single transmitting antenna position (T5) is labeled
with a square (there are 7 transmitting antenna positions in all, as shown in Figure 3), and the receiving
antenna positions (Rx) are labeled with triangles. Simulated waveforms are shown in (c) and (d),
corresponding to the simulation times for (a) and (b), respectively. Circles denote the arrival times (before
measurement noise is added).

Figure 5. Difference between straight-ray travel times
(TSR) and the travel times calculated using a finite
difference method (TFD) versus vertical distance by which
ray passes above or below injection point (for model with
uniform soil parameters).
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In Case 1, the vertical component of the log-permeability
(kv), the anisotropy ratio (kv/kh), the porosity (j), and the
parameter Tshift are estimated. In Case 2, two parameters of
the relative permeability and capillary pressure functions,
namely m and log 1/a, are estimated, along with the vertical
component of the log-permeability, the anisotropy ratio, and
the parameter Tshift. In addition, for both cases we
investigate various scenarios of uncertainty in the petro-
physical function: (a) the petrophysical function is known
accurately; the assumed or measured solid component
dielectric constant (ks) in the petrophysical function
is inaccurate (i.e., it contains an error of (b) +20% and
(c) �20%); and (d) the parameter ks is estimated through
inversion along with the remaining unknown parameters.
For this example, we assume no prior information is
available for the unknown parameters (i.e., the prior pdfs are
uniform), yielding the objective function (13) with only the
first term.
[47] When the petrophysical parameters are known accu-

rately, as in Case 1a, reasonably accurate estimates of the
hydraulic parameters are obtained, although the anisotropy
ratio is over-predicted (Table 2). The difference between the
predicted water saturation distribution and that of the true
model at a single time is depicted in Figure 6, showing good
overall agreement (maximum relative difference of 10%)
with a slight under-prediction of water saturation in the
vicinity of the plume. The parameter Tshift is estimated to be
0.125 ns, which is similar to the expected average bias in
the straight-ray approximation, as discussed above.
[48] In practice, a small (or large) amount of error can be

unintentionally introduced into the petrophysical function,
for example, when a petrophysical function derived from
laboratory scale measurements is employed at the field
scale, or when an unconfirmed generic function is used at
a given site. To examine the impact of realistic errors in the
petrophysical parameters on inversion results, we intention-
ally use incorrect values for the parameter ks (errors of
±20% of its true value of 4.5). The resulting errors in the
hydraulic parameter estimates are substantially increased
(Cases 1b and 1c in Table 2), most notably: the porosity is
over-predicted and under-predicted by almost 30% for
Cases 1b and 1c, respectively; and the anisotropy ratio is
over-predicted by 60% for Case 1c. As shown in Figure 6,
the water saturation profile is over-estimated (by up to 65%)
and under-estimated (by up to 30%) for Cases 1b and 1c,
respectively.
[49] Note that the petrophysical function (see equation (8))

depends not only on ks but also on porosity, which was

estimated through inversion. The erroneous values of ks
assumed for Cases 1b and 1c and the corresponding
inaccurate porosity estimates lead to highly inaccurate
petrophysical functions (Figure 7).
[50] Because errors in the petrophysical function can

adversely affect hydraulic parameter estimates, our inver-
sion methodology allows for such errors to be partially
compensated by allowing one or more of the petrophysical
parameters to be unknown (aGPR) and jointly estimated with
the remaining soil hydraulic parameters (ah). For Case 1d,
the parameter ks is considered unknown and is estimated
along with the remaining soil hydraulic parameters, which
are estimated more accurately than for the two previous
cases (e.g., the error in the porosity estimate is reduced to
5%). Consequently, the saturation profile is better predicted,
to similar accuracy as for the case in which the parameter ks
was error free (Case 1a).
[51] In Cases 2a–2d we include in the estimation proce-

dure two parameters of the capillary pressure and water
retention functions—namely m and log 1/a—and we again
consider several scenarios of uncertainty in the petrophy-
sical function. Based on Table 2 (and Figure 6) the

Table 2. Estimated Parameters for Synthetic Model With Uniform Soil Hydraulic Parametersa

ks log kv [kv, m
2] kv/kh m log (1/a) [a, Pa�1] j Tshift, ns

True model 4.5 �11.301 0.25 2.69 3.447 0.364 N/A
Case 1a fixed �11.270 (±0.022) 0.3230 (±0.3E-3) fixed fixed 0.384 (±0.006) 0.125 (±0.03)
1b {5.4} �10.679 (±0.019) 0.216 (±0.014) fixed fixed 0.467 (±0.005) 0.055 (±0.033)
1c {3.6} �12.243 (±0.056) 0.42 (±0.6E-3) fixed fixed 0.262 (±0.009) 0.26 (±0.04)
1d 4.52 (±0.046) �11.262 (±0.043) 0.325 (±0.26E-3) fixed fixed 0.384 (±0.008) 0.119 (±0.033)
Case 2a fixed �11.2308 (±0.051) 0.252 (±0.007) 2.57 (±0.063) 3.38 (±0.04) Fixed 0.0916 (±0.034)
2b {5.4} �11.550 (±0.046) 0.167 (±0.014) 4.495 (±0.261) 3.77 (±0.04) Fixed �0.0216 (±0.038)
2c {3.6} �11.225 (±0.048) 0.570 (±0.047) 2.160 (±0.033) 3.32 (±0.02) Fixed 0.199 (±0.04)
2d 4.496 (±0.042) �11.176 (±0.025) 0.223 (±0.023) 2.480 (±0.003) 3.34 (±0.02) Fixed 0.123 (±0.034)

aThe word ‘‘fixed’’ indicates that the true parameter value from the model is assumed to be known for that case; values in braces are the incorrect values
used in inversion to test sensitivity to the error in ks; values in parentheses are the marginal standard deviations of the estimated parameter.

Figure 6. Predicted saturation profiles at 18 hours after
onset of injection for Cases 1a–1d (left) and Cases 2a–2d
(right) for example in section 3.1. The profiles are vertical
slices taken from the two-dimensional models at a
horizontal distance of 2 m.
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following observations can be made: (1) knowing the
parameter ks accurately allows for reasonable estimates of
the soil hydraulic parameters and good predictions of
water saturation (Case 2a); (2) the presence of error in the
petrophysical function adversely affects estimates of the
soil hydraulic parameters and of the predicted water
saturation profiles (Cases 2b and 2c); and (3) adverse
effects of uncertainty in the parameter ks are minimized
when ks is jointly estimated with the remaining hydraulic
parameters (Case 2d).
[52] The capillary pressure and relative permeability

functions obtained for Cases 1 and 2 are shown in
Figure 8. The parameters of these functions were assumed
to be known in Case 1, whereas two parameters were
estimated in Case 2 (see Table 2).
[53] Note the low error in the estimated petrophysical

parameters for Cases 2b and 2c, relative to those for
Cases 1b and 1c; this is because in Case 2 the correct
porosity value is assumed, leaving only inaccuracy in ks to

affect the petrophysical function (Figure 7). However, as
was shown above, small inaccuracies in ks were sufficient to
cause large errors in the hydraulic parameter estimates, but
joint estimation of ks allowed for such inaccuracies to be
largely overcome.

3.2. Model With Heterogeneous Permeability

[54] The model explored in this example is identical to
the one explored in section 3.1, except that now the log-
permeability is spatially heterogeneous (Figure 9a), having
been generated using sequential simulation [Deutsch and
Journel, 1992] with an anisotropic spherical semivariogram
(relevant parameters are given in Table 1). The remaining
soil hydraulic parameters are modeled as spatially uniform.
Synthetic data sets were obtained in the same fashion as in
the previous example, except that the surveys for times of
12, 24, 36, and 48 hours after injection are used, in addition
to the pre-injection survey. Measurement noise was added to
the synthetic NP and GPR data sets in the same manner as
for the previous example.
[55] Various studies have examined the placement of pilot

points [RamaRao et al., 1995; Gomez-Hernandez et al.,
1997], but most applications involved horizontal flow in the
saturated zone. Currently, we use a configuration, tested by
Kowalsky et al. [2004a] in an application similar to the
present one, in which pilot points are placed on a regular
grid. We estimate pilot point values along two vertical
columns placed between the boreholes (see Figure 9a). The
spacing in the vertical direction is finer than in the
horizontal direction due to the shorter correlation length
scale of heterogeneity in the vertical direction. Note that the
computation time required for inversion increases with the
number of pilot points (unknowns), which makes it
necessary to balance the desired model resolution with
computational limitations, especially for three-dimensional
models (such as is considered in section 4). In the present
example, 17 unknowns are estimated in total, namely, the

Figure 7. Petrophysical functions for Case 1 (left) and
Case 2 (right) of example in section 3.1.

Figure 8. Capillary pressure function (left axis) and relative permeability function (right axis) for
example in section 3.1. For Case 1, the relative permeability function and the capillary pressure function
are fixed to those of the true model (circles). For Case 2, the parameters log (1/a) and m of the capillary
pressure function and relative permeability function are estimated through inversion.
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uniform soil hydraulic parameters j and log kv, 14 pilot
point permeability modifier values Xpp, and the petrophy-
sical parameter ks.
[56] Recall that the entire permeability field is generated

conditional to the permeability modifier values at the pilot
point locations, such that estimating the optimal pilot point
values is tantamount to determining the optimal permeabil-
ity distribution of the entire model.
[57] The total flux at the surface is assumed to be known,

as are the variance of the permeability field (c0 = 0.5) and
the parameters of the log-permeability semivariogram
(the range r is 0.3 m in the vertical direction and 6.0 m
in the horizontal), the permeability anisotropy ratio (kh =
4kv), and remaining soil hydraulic parameters (see Table 1).
Note that the purpose of the examples presented here
is not to design the optimal injection experiment, but
rather to demonstrate the merit of the joint inversion
approach.
3.2.1. GPR Travel Time Considerations
[58] In the previous example (section 3.1), which utilized a

uniform soil model, it was necessary to account for system-
atic error in the travel times resulting from the straight-ray
approximation. However, in the present example, which
contains a heterogeneous permeability distribution, there is
minimal systematic error in the simulated straight-ray travel
times. Because the injected water is dispersed and distrib-
uted more heterogeneously, corresponding to an increased
‘‘randomness’’ in the EM velocity field (as compared to
the elliptically shaped plume in the previous example),
the actual ray paths no longer bend in a highly focused
fashion around the injected water plume, making estima-
tion of the parameter Tshift unnecessary. (For reference, at

t = 12, 24, 36 and 48 hours, the maximum velocity
decreases due to the inclusion are 36%, 24%, 22.3%, and
22.1%, respectively.)
[59] For comparison with the previous synthetic example

(for data simulated at 18 hours after onset of injection), the
mean and standard deviation of the errors in the straight-ray
arrival times for the post-injection surveys, relative to the
travel times picked from waveforms simulated using the
finite difference technique, are 0.055 ns and 0.20 ns,
respectively. The corresponding values of the pre-injection
survey are �0.020 ns and 0.043 ns.
3.2.2. Inversion Results
[60] Using the time-lapse GPR travel times and NP data

simulated for the heterogeneous model, we test the approach
for the case in which the soil hydraulic parameters and the
petrophysical parameter ks are unknown, as described
above. We assume no prior information is available for
the unknown parameters, except for parameters of the log-
permeability semivariogram function (including the var-
iance), yielding the objective function with the first and
second term (see equation (13)). We performed 20 inversion
realizations, each with a different realization of the initial
permeability field, resulting in 20 equally plausible sets of
parameters. (Additional realizations were unnecessary in
this case since the ensemble statistics of the estimates
stabilized sufficiently.)
[61] The estimated log-permeability distributions compare

well with that of the true model (as an example, one inversion
realization is shown in Figure 9b). The mean of the multiple
realizations is smooth, capturing the true model within the
error bounds (see Figures 9c and 9d). Note that while
the mean of the permeability realizations is smooth, the

Figure 9. (a) True log-permeability distribution for model in section 3.2, (b) single realization of
estimated permeability field, (c) the ensemble mean of the predicted distributions, and (d) vertical cross
section showing distribution for true model (solid line), mean of the predicted distributions (dashed line),
and the uncertainty bounds for predicted distributions (dotted lines), defined as ±2 standard deviations.
The crosses in (a) indicate pilot point locations used for inversion.
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permeability fields estimated for each inversion realization
reflect, on average, the specified spatial correlation model.
Thus, the multiple permeability realizations could be used to
predict flow phenomena, for example, the pdf of break-
through time of the injected water reaching a control plane.
[62] The predicted water saturation profiles, on average,

match that of the true model (Figure 10). The peaks in water
saturation near 1 and 1.5 meters depth are slightly under-
predicted, especially for the earlier time shown (12 hours
after the onset of injection). However, in all cases the peaks
fall within the uncertainty bounds of the predicted profiles
(Figures 10c and 10f).
[63] The average of the predicted petrophyiscal functions,

based on the estimated values of j and ks, is nearly identical
to that of the true model (Figure 11).

4. Application to Field Data From DOE
Hanford Site

[64] An application of the joint inversion method to a
field data set is given in this section. The purpose is not to
develop an optimal hydrological model for the field site
considered, but rather to demonstrate the method in the
context of a three-dimensional setting with actual field data
and to demonstrate the potential benefit that GPR measure-
ments offer for estimating soil hydraulic parameters.

4.1. Description of Site and Experiment

[65] At the U.S. Department of Energy Hanford site, in
Washington, vast quantities of highly radioactive waste and
other toxic fluids have leaked into the vadose zone [e.g.,
Sisson and Lu, 1984; Gee and Ward, 2001; Hunt and Gee,
2002] and have necessitated the development of methods
for monitoring and ultimately controlling the spread of
contamination. Here we consider the Hanford 200 East Area

field site (also known as the ‘‘Sisson and Lu site’’), which
has been the subject of a number of experiments [Sisson and
Lu, 1984; Fayer et al., 1993, 1995; Gee and Ward, 2001],
and for which laboratory investigations of soil properties
have been reported [Freeman et al., 2001; Last and
Caldwell, 2001; Last et al., 2001; Schaap et al., 2003]

Figure 10. For heterogeneous model (section 3.2), (a) the distribution of water saturation in the true
model, (b) the ensemble mean of the predicted water distributions, and (c) vertical cross section of water
saturation for true model (solid line), the average of the predicted distribution of water saturation (dashed
line), and the uncertainty bounds (dotted lines) at 12 hours after the onset of water injection. Plots similar
to those in (a)–(c) are shown in (d)–(f) for the time of 24 hours after the onset of injection.

Figure 11. Petrophysical functions for heterogeneous
example in section 3.2: true model (squares); ensemble
mean of the estimated petrophysical functions (solid line);
and uncertainty bounds (dashed lines), defined as ± two
standard deviations.

W11425 KOWALSKY ET AL.: JOINT INVERSION OF GPR AND HYDROLOGICAL DATA

13 of 19

W11425



and modeling studies performed [Smoot and Lu, 1994;
Smoot and Williams, 1996; Rockhold et al., 1999; Zhang et
al., 2004].
[66] The infiltration experiment we consider began in

May of 2000 and consisted of 5 injections of water over a
period of one month. Each injection of approximately
4000 L of water lasted between 4 and 6.75 hours. During
the experiment, extensive NP measurements [Ward et al.,
2000] and other geophysical data sets, including cross-
borehole GPR [Majer et al., 2000] and electrical resistance
tomography (ERT) measurements [Ramirez et al., 2001],
were collected. The schedule for the injections and the
surveys are depicted in Figure 12. Baseline surveys for both
the GPR and NP measurements were collected before
injection, and these are thought to reflect steady-state
conditions. The NP surveys were typically conducted on the
day following each injection, whereas the GPR surveys
were collected sporadically.
[67] The locations of the measurement access wells are

shown in Figure 13. The dense NP measurements, collected
at a depth interval of 30.5 cm, allow for construction of
three-dimensional data sets through interpolation [e.g.,
Ward et al., 2000]. However, in this example, only the data
collected in 2 wells (see Figure 13) and at three survey times
(NP-Pre, NP-1, NP-2) are used for inversion, as are the GPR
data for only two survey times (GPR-Pre and GPR-1). The
dense NP data derived from all NP wells are only used to
test the distributions that are predicted with the calibrated
models at the time for which survey NP-3 was collected
(corresponding to 15 days after the initial injection). Note
that the remaining figures show water content rather than
water saturation in order to allow for comparison with the
NP-derived water content data, which do not allow for
separation into water saturation and porosity; porosity is
estimated in the inversion procedure.
[68] Figure 14a shows the distribution of water content

derived from the dense NP data cube (for NP data collected
in all 32 wells at one survey conducted 15 hours after the
initial injection of water). The locations of the wells in
which cross-borehole GPR measurements were collected

are indicated in Figure 14b, as are the straight-ray paths for
the GPR measurements used in this example (representing a
small fraction of the GPR measurements that were actually
collected).

4.2. Model With Heterogeneous Permeability

[69] We focus on a subset of the study area. The nodes of
the hydrological model are indicated in Figure 13. The
model domain is approximately 12 m in both horizontal
directions, and 14 m in depth. The grid spacing ranges
between 0.5 and 1.25 m in the horizontal directions, and

Figure 12. Measurement schedule for injection experiment at Hanford site. NP and GPR data sets were
collected before the first injection (NP-pre and GPR-Pre, respectively) and at later times (NP-1 to NP-7,
and GPR-1 to GPR-7, respectively). A limited subset of NP data were used for inversion (2 wells
indicated in Figure 13 at survey times NP-Pre, NP-1, and NP-2). The GPR data sets used for inversion are
GPR-Pre and GPR-1.

Figure 13. Measurement locations at the Hanford site and
plan view of numerical grid used for hydrological modeling.
Note that only 2 NP wells (solid circles) are used for
inversion, while the remaining 30 NP wells (open circles)
are only used to test the inversion results.
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equals 0.305 m in the vertical direction to allow for small-
scale variability and to coincide with the vertical spacing of
the NP measurements. The vertical grid spacing of the
bottom layers is increased, since the water content in this
region remains constant throughout the injection experi-
ment. All elements in the top layer of the model are
connected to one grid block, at which a small flux of water
is applied to represent surface conditions. A free drainage
boundary is implemented at the bottom of the model
domain, as are no-flow boundaries at the four vertical sides.
For the injection source, a time-dependent mass flow rate is
specified at one grid point according to the schedule

depicted in Figure 12. Since the actual time-varying flow
rates are unknown (i.e., suspected to vary from the average
values measured during the experiment), they are estimated
with the remaining unknown parameters.
[70] Based on geostatistical analyses of permeability

measurements, an anisotropic spherical semivariogram
model was chosen to model the log-permeability. Various
parameters that are either assumed or estimated in the
present example are listed in Table 3.
[71] Using the two GPR travel time surveys (GPR-Pre

and GPR-1) and a small subset of the available NP data
(2 wells for surveys NP-Pre, NP-1, and NP-2), we test the

Figure 14. Available data sets collected during injection experiment at the Hanford site: (a) example of
densely sampled NP data set (interpolated from NP wells, which are indicated by solid black vertical
lines); (b) the straight-ray paths that are formed by the 4 GPR wells which are used for inversion.

Table 3. Assigned and Estimated Parameters (Not Including Pilot Point Log-Permeability Modifier Estimates) for Application of Method

to Hanford Field Data

Description Fixed Parameter Values

Estimated
Parameters

(NP Data Only)

Estimated
Parameters

(GPR + NP Data)

Petrophysical function
parameters. See equation (8).

n = 0.5 Not estimated ks = 4.137 (±0.074)

kw = 81

ka = 1
Flow modeling parameters

See (2) and (3)a
mw = 1.002 
 10�3 Pa s log [kv (m

2)] =
�11.683 (±0.620)

log [kv (m
2)] =

�11.928 (±0.243)
rw = 1000 kg/m3 j = 0.233 (±0.057) j = 0.189 (±0.030)
kv/kh = 0.05

Relative permeability and
capillary pressure
functions. See (4) and (5)a.

Sw
res = 0.083 fixed fixed

Sw
sat = 1.0

m = 3.447
log [a�1 (Pa)] = 3.45

Geostatistical model for
log-permeability
(spherical semivariogram)b

Horizontal fixed fixed
c0 = 0.0, c1 = 0.269, r = 20.0 m
Vertical
c0 = 0.0, c1 = 0.269, r = 0.8 m

Injection flow rate
(duration)c

Q1 = 0.278 
 F kg/s (4 h) F = 1.03 (±0.22) F = 1.25 (±0.10)
Q2 = 0.165 
 F kg/s (6.75 h)
Q3 = 0.185 kg/s (6 h)
Q4 = 0.185 kg/s (6 h)
Q5 = 0.185 kg/s (6 h)

Boundary conditions Bottom: free drainage fixed fixed
Sides: zero flux
Top: total flux = 1.0e-4 kg/s

aParameters defined in text.
bAs defined in Table 1.
cF is the factor by which the measured injection flow rate is multiplied.
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approach for estimating the unknown parameters listed in
Table 3, which include the petrophysical parameter ks, the
porosity, the mean log-permeability, the log-permeability
modifier values at 16 pilot point locations, and a factor by
which the reported flow rates at the injection point are
multiplied. As before, we assume that no prior information
is available for the unknown parameters, except for the
calculated parameters of the log-permeability semivario-

gram function, yielding the objective function (13) with
the first and second terms.
[72] We performed multiple inversion realizations using

the data sets described above and with the flow simulation
including the first two water injections and continuing up to
the time of the second GPR survey (GPR-1) (see Figure 12).
The results are summarized in Table 3.
[73] Flow simulations with the three-dimensional models

that were obtained through inversion then allowed for the
water distributions to be recorded for the time corresponding
to NP survey NP-3 (see Figure 12). Multiplying the simu-
lated water saturation values at this time by the estimated
porosity values gave predictions of water content, which
could be compared with the three-dimensional water content
data sets (inferred from interpolation of the dense NP
measurements) collected at the same time.
[74] In Figure 15, two-dimensional slices (along the

line labeled AB in Figure 13) of the dense NP data set
(Figure 15a) are compared to slices of the predicted water
content distributions (for a single inversion realization) for
two different cases of inversion. The first case (Figure 15b)
includes inversion using only the limited NP data sets (i.e.,
no GPR data were used). The second case (Figure 15c)
demonstrates the relative gain from including data from two
GPR surveys in the inversion. While the overall trends are
similar for both cases, inclusion of GPR measurements
allows for various peaks in water content to be predicted
more accurately.
[75] To better illustrate this point, vertical profiles of

predicted and measured water content at a location near
the injection well are given in Figure 16 for the same

Figure 15. Comparison of (a) water content (q) as
measured from dense NP data set with predicted distribu-
tions given by (b) inversion realization obtained using
limited NP data set (using 2 wells at three times), and
(c) inversion realization obtained using the GPR data set
(collected using 4 GPR wells at two survey times) and the
limited NP data set. This figure shows two-dimensional
slices (see line AB in Figure 13) from three-dimensional
models.

Figure 16. Comparison of water content profile near
injection point as measured by dense NP data set (circles)
with the mean of the predicted water content profiles (solid
line with dots) obtained through inversion of (a) limited NP
data set (using 2 wells at three times) and (b) both the GPR
data set and the limited NP data set. Note that while NP
measurements were collected in 27 wells to obtain the dense
NP data sets, only a limited subset of NP measurements
were used for inversion (see Figure 13); however, all NP
data are used to test the inversion predictions. The dashed
lines around the mean of the predicted profiles indicate the
estimation uncertainty (±2 standard deviations).
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cases. In this figure, the mean of 5 inversion realizations
is shown, as are the prediction uncertainty bounds. The
parameters that were estimated for both cases are listed in
Table 3.
[76] It is worth emphasizing that while NP measurements

were collected in 27 wells to obtain the dense NP data sets
at eight times, only a limited subset of NP measurements at
each time are actually used for inversion (see Figures 12 and
13); however, all NP data were used to test the inversion
predictions.

5. Conclusions

[77] It is recognized that subsurface flow and contaminant
transport processes are critically affected by the structure
and heterogeneity of the subsurface as well as the related
distribution of soil moisture. While geophysical methods
(such as GPR) may provide high-resolution images of the
subsurface, the relation between these images and parame-
ters affecting flow and transport remains ambiguous. On the
other hand, while hydrological data contain information
about properties relevant to flow and transport, their spatial
coverage and resolution is usually insufficient. A joint
inversion approach has the potential to combine the
strengths of both characterization methods.
[78] A method was described for estimating field-scale

soil hydraulic parameters and parameters of the petrophys-
ical function using time-lapse multiple-offset cross-borehole
GPR travel times and other hydrological data, such as water
content measurements inferred from neutron probe logs.
This research builds upon previous work in order to
accommodate uncertainty in the petrophysical function
and to increase the flexibility of GPR measurement config-
urations that may be considered, and consequently increase
the resolution at which soil hydraulic parameters may be
estimated.
[79] The method was applied to two synthetic examples,

which consisted of a model with uniform soil hydraulic
parameters and a model with heterogeneous permeability.
Potential errors in the petrophysical function were observed
to significantly affect the soil hydraulic parameter estimates,
but inclusion of a petrophysical parameter in the joint
inversion procedure allowed for improved estimates of the
soil hydraulic parameters.
[80] The importance of accounting for errors in the

forward model used for simulating GPR measurements
was also addressed. Using the straight-ray approximation
to simulate GPR travel times introduces bias in some
cases—the travel time bias was spatially dependent and
time dependent, showing over-prediction near the edges of
the water plume at early times in the injection experiment.
To compensate for this bias, an additional correction pa-
rameter was estimated during inversion. In heterogeneous
models, the bias was minimal, making estimation of the
correction parameter unnecessary.
[81] The method was also applied to the U.S. Department

of Energy (DOE) Hanford field site in Washington, where
time-lapse GPR and NP data sets were collected. Compared
to predictions made through inversion of a limited NP data
set, inclusion of GPR data in the inversion procedure
allowed for soil hydraulic parameter estimates that gave
improved predictions of water saturation. We conclude that
the approach can provide in a minimally invasive manner

accurate estimates of field-scale soil hydraulic parameters
and the related moisture distribution.
[82] Future research that is likely to strengthen the joint

inversion approach and widen its applicability for the
characterization of complex subsurface flow and transport
systems includes the following: (1) implementing GPR
forward modeling capabilities for additional measurement
types (e.g., cross-borehole amplitude and surface reflection
data); (2) incorporating capabilities for joint inversion with
additional geophysical methods, such as seismic and elec-
trical methods; (3) accounting for spatial variations of the
petrophysical function and its dependence on temperature;
and (4) exploring the potential of estimating parameters of
the spatial correlation functions within the joint inversion
procedure. Alternative joint inversion methodologies and
different descriptions of geological heterogeneity as applied
to the Hanford site experiment may also be explored in the
future.
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